If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3x2 = -6x + 4 Reorder the terms: 3x2 = 4 + -6x Solving 3x2 = 4 + -6x Solving for variable 'x'. Reorder the terms: -4 + 6x + 3x2 = 4 + -6x + -4 + 6x Reorder the terms: -4 + 6x + 3x2 = 4 + -4 + -6x + 6x Combine like terms: 4 + -4 = 0 -4 + 6x + 3x2 = 0 + -6x + 6x -4 + 6x + 3x2 = -6x + 6x Combine like terms: -6x + 6x = 0 -4 + 6x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -1.333333333 + 2x + x2 = 0 Move the constant term to the right: Add '1.333333333' to each side of the equation. -1.333333333 + 2x + 1.333333333 + x2 = 0 + 1.333333333 Reorder the terms: -1.333333333 + 1.333333333 + 2x + x2 = 0 + 1.333333333 Combine like terms: -1.333333333 + 1.333333333 = 0.000000000 0.000000000 + 2x + x2 = 0 + 1.333333333 2x + x2 = 0 + 1.333333333 Combine like terms: 0 + 1.333333333 = 1.333333333 2x + x2 = 1.333333333 The x term is 2x. Take half its coefficient (1). Square it (1) and add it to both sides. Add '1' to each side of the equation. 2x + 1 + x2 = 1.333333333 + 1 Reorder the terms: 1 + 2x + x2 = 1.333333333 + 1 Combine like terms: 1.333333333 + 1 = 2.333333333 1 + 2x + x2 = 2.333333333 Factor a perfect square on the left side: (x + 1)(x + 1) = 2.333333333 Calculate the square root of the right side: 1.527525232 Break this problem into two subproblems by setting (x + 1) equal to 1.527525232 and -1.527525232.Subproblem 1
x + 1 = 1.527525232 Simplifying x + 1 = 1.527525232 Reorder the terms: 1 + x = 1.527525232 Solving 1 + x = 1.527525232 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = 1.527525232 + -1 Combine like terms: 1 + -1 = 0 0 + x = 1.527525232 + -1 x = 1.527525232 + -1 Combine like terms: 1.527525232 + -1 = 0.527525232 x = 0.527525232 Simplifying x = 0.527525232Subproblem 2
x + 1 = -1.527525232 Simplifying x + 1 = -1.527525232 Reorder the terms: 1 + x = -1.527525232 Solving 1 + x = -1.527525232 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = -1.527525232 + -1 Combine like terms: 1 + -1 = 0 0 + x = -1.527525232 + -1 x = -1.527525232 + -1 Combine like terms: -1.527525232 + -1 = -2.527525232 x = -2.527525232 Simplifying x = -2.527525232Solution
The solution to the problem is based on the solutions from the subproblems. x = {0.527525232, -2.527525232}
| h/(25/8)=2 | | 2x^5-512= | | -11(4+g)=121 | | (x-8y)(-3x+y)= | | -0.75x+1=-11 | | -8/5-(-2) | | 419.3784=2*3.14*17.64+2*3.14*4.2*h | | a^3-4+2a^3b-8b= | | 9.21+5.28b=8.35b | | 4x/6=3/7 | | 26(h-992)=208 | | 3gal= | | 26(h-92)=208 | | +3/4(x)+1=-11 | | 4/4a= | | 2x-29=-33 | | (0.25x+115)=90 | | 3(2x-4)-(2x-3)+7=0 | | 2.5(x+4)=4.75 | | X+14+3x-18=180 | | 0.2y+10.5=15 | | 3019+n=30 | | 4.6y+0.19=55.39 | | 5x+4=10-17 | | 7y+3=35 | | (5x1/10) | | 25/30=35/x | | 4166=5+(x-1)*5 | | 1/4(n)=2 | | 6/7y=12 | | -5+3u=1 | | S(9)+5= |